Differences in response to muscarinic activation between first and higher order thalamic relays.
نویسندگان
چکیده
The mammalian thalamus is composed of two types of thalamocortical relay. First order relays receive information from subcortical sources and relay it to cortex, whereas higher order relays receive information from layer 5 of one cortical area and relay it to another. Recent reports suggest that modulatory inputs to first and higher order relays may differ. We used rat thalamic brain slices and whole cell recordings from relay cells in various first order (the lateral geniculate nucleus, the ventral posterior nucleus, and the ventral portion of the medial geniculate body) and higher order (the lateral posterior, the posterior medial nucleus, and the dorsal portion of the medial geniculate body) relays to explore their responses to activation of muscarinic receptors. We found that, whereas all first order relay cells show a depolarizing response to muscarinic activation, approximately 20% of higher order relay cells respond with hyperpolarization. The depolarization is accompanied by an overall increase in input resistance, whereas the hyperpolarization correlates with a decrease in resistance. Because activation of cholinergic brain stem afferents to thalamus increases with increasing behavioral vigilance, the findings suggest that increased vigilance will depolarize all first order and most higher order relay cells but will hyperpolarize a significant subset of higher order relay cells. Such hyperpolarization is expected to bias these relay cells to the burst firing mode, and so these results are consistent with evidence of more bursting among higher order than first order relay cells.
منابع مشابه
Differences in response to serotonergic activation between first and higher order thalamic nuclei.
Two types of thalamic nuclei have been recognized: first order, which relay information from subcortical sources, and higher order, which may relay information from one cortical area to another. We have recently shown that muscarinic agonists depolarize all first order and most higher order relay cells but hyperpolarize a significant proportion of higher order relay cells. We now extend this re...
متن کاملHigher-order thalamic relays burst more than first-order relays.
There is a strong correlation between the behavior of an animal and the firing mode (burst or tonic) of thalamic relay neurons. Certain differences between first- and higher-order thalamic relays (which relay peripheral information to the cortex versus information from one cortical area to another, respectively) suggest that more bursting might occur in the higher-order relays. Accordingly, we ...
متن کاملThalamic relays and cortical functioning.
Studies on the visual thalamic relays, the lateral geniculate nucleus and pulvinar, provide three key properties that have dramatically changed the view that the thalamus serves as a simple relay to get information from subcortical sites to cortex. First, the retinal input, although a small minority (7%) in terms of numbers of synapses onto geniculate relay cells, dominates receptive field prop...
متن کاملThe role of the thalamus in the flow of information to the cortex.
The lateral geniculate nucleus is the best understood thalamic relay and serves as a model for all thalamic relays. Only 5-10% of the input to geniculate relay cells derives from the retina, which is the driving input. The rest is modulatory and derives from local inhibitory inputs, descending inputs from layer 6 of the visual cortex, and ascending inputs from the brainstem. These modulatory in...
متن کاملSelective GABAergic Control of Higher-Order Thalamic Relays
GABAergic signaling is central to the function of the thalamus and has been traditionally attributed primarily to the nucleus reticularis thalami (nRT). Here we present a GABAergic pathway, distinct from the nRT, that exerts a powerful inhibitory effect selectively in higher-order thalamic relays of the rat. Axons originating in the anterior pretectal nucleus (APT) innervated the proximal dendr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 6 شماره
صفحات -
تاریخ انتشار 2007